

engineers | scientists | innovators

LAKE PETIT DAM Pickens County, Georgia State ID No. 112-009-00462 NID No. GA00685

Stability Analyses of Lake Petit Dam

Prepared for:

Big Canoe® Property Owners Association, Inc. 10586 Big Canoe Jasper, GA 30143

Prepared by:

Geosyntec Consultants, Inc.

835 Georgia Avenue, Suite 500 Chattanooga, TN 37402

Project No: TN9418

Document No: GA230035

April 2023

Geosyntec^D consultants

CALCULATION PACKAGE COVER SHEET

Client:	Big Canoe F Association	Property Owne	rs Project:	New Seepage and Stability	Collection System Analyses
Project No.:	TN9418	Task #: 03.	/02		
TITLE OF C	OMPUTATI	I ON Stabilit	y Analyses of Lake Petit	Dam	
COMPUTAT	IONS BY:	Signature	Itt		04/26/2023
					DATE
		Printed Name	Edisson Ortega Avila		
		and Title	Senior Staff Engineer	,	
ASSUMPTIO	NS AND PR	ROCEDURES			
CHECKED B	SY:	Signature	Jain Mado		04/26/2023
(Peer Reviewe	er)				DATE
		Printed Name	Jaime A. Mercado, Pl	1.D., P.E.	
		and Title	Engineer		
COMPUTAT CHECKED B	IONS SY:	Signature	Jain Nedo		04/26/2023
					DATE
		Printed Name	Jaime A. Mercado, Ph	D., P.E .	
		and Title	Engineer		
СОМРИТАТ	IONS	Signature	14	-	04/26/2023
BACKCHEC	KED BY:	Signature			DATE
(Originator)		Printed Name	Edisson Ortega Avila		
		and Title	Senior Staff Engineer		
APPROVED	BY:	Signature	4Bat		04/26/2023
(PM or Design	nate)	/			DATE
_		Printed Name	John W. Barrett, P.E. (C	JA)	
		and Title	Principal Engineer		

Geosyntec ^{>}	Written	by:
---------------------------	---------	-----

EOA Date 04/26/2023

consultants

Title of Computation:

Stability Analyses of Lake Petit Dam

 New Seepage Collection System and

 Calc. No.:
 01
 Project:
 Stability Analyses

Project No.: <u>TN9418</u> Task No: <u>03/02</u>

TABLE OF CONTENTS

	T
1.1 BACKGROUND AND SITE GEOMETRY	1
1.2 1998 EVALUATION OF STABILITY AND REHABILITATION MEASURES	1
1.3 OBJECTIVE	2
APPLICABLE RULES AND REGULATIONS	2
2.1 LOADING CONDITIONS	2
2.2 Normal Pool	3
2.3 Earthquake Loading	3
2.4 RAPID DRAWDOWN	3
METHODOLOGY	4
3.1 SEEPAGE ANALYSIS	4
3.1.1 Boundary Conditions	5
3.2 SLOPE STABILITY ANALYSIS	5
3.2.1 Static Slope Stability Evaluation	6
3.2.2 Pseudostatic Slope Stability Evaluation	h
2.2.2 Panid Drawdown Slong Stability Evaluation	0
3.2.3 Rapid Drawdown Slope Stability Evaluation	9
3.2.3 Rapid Drawdown Slope Stability Evaluation	9 .0
3.2.3 Rapid Drawdown Slope Stability Evaluation INPUT DATA 4.1 CROSS-SECTION USED FOR ANALYSIS	9 .0
3.2.3 Rapid Drawdown Slope Stability Evaluation INPUT DATA 4.1 CROSS-SECTION USED FOR ANALYSIS 4.2 MATERIAL PROPERTIES	0 0 0
3.2.3 Rapid Drawdown Slope Stability Evaluation 1 INPUT DATA 1 4.1 CROSS-SECTION USED FOR ANALYSIS 1 4.2 MATERIAL PROPERTIES 1 4.2.1 Hydraulic Conductivity 1	9 0 0 0 1
3.2.3 Rapid Drawdown Slope Stability Evaluation 1 INPUT DATA 4.1 CROSS-SECTION USED FOR ANALYSIS 1 4.2 MATERIAL PROPERTIES 1 4.2.1 Hydraulic Conductivity 1 4.2.2 Drained and Undrained Strength Parameters 1	9 0 0 1 2
3.2.3 Rapid Drawdown Slope Stability Evaluation INPUT DATA 4.1 CROSS-SECTION USED FOR ANALYSIS 4.2 MATERIAL PROPERTIES 4.2.1 Hydraulic Conductivity 4.2.2 Drained and Undrained Strength Parameters 1 4.2.1 RESULTS	9 0 0 0 1 2 3
3.2.3 Rapid Drawdown Slope Stability Evaluation 1 INPUT DATA 1 4.1 CROSS-SECTION USED FOR ANALYSIS 1 4.2 MATERIAL PROPERTIES 1 4.2.1 Hydraulic Conductivity 1 4.2.2 Drained and Undrained Strength Parameters 1 ANALYSIS RESULTS 1 5.1 STATIC SLOPE STABILITY EVALUATION RESULTS 1	9 0 0 0 1 2 3 3
3.2.3 Rapid Drawdown Slope Stability Evaluation 1 INPUT DATA 1 4.1 CROSS-SECTION USED FOR ANALYSIS 1 4.2 MATERIAL PROPERTIES 1 4.2.1 Hydraulic Conductivity 1 4.2.2 Drained and Undrained Strength Parameters 1 ANALYSIS RESULTS 1 5.1 STATIC SLOPE STABILITY EVALUATION RESULTS 1 5.2 PSEUDOSTATIC SLOPE STABILITY EVALUATION RESULTS 1	9 0 0 1 2 3 3 3
3.2.3 Rapid Drawdown Slope Stability Evaluation 1 INPUT DATA 4.1 CROSS-SECTION USED FOR ANALYSIS 1 4.2 MATERIAL PROPERTIES 1 4.2.1 Hydraulic Conductivity 1 4.2.2 Drained and Undrained Strength Parameters 1 ANALYSIS RESULTS 1 5.1 STATIC SLOPE STABILITY EVALUATION RESULTS 1 5.2 PSEUDOSTATIC SLOPE STABILITY EVALUATION RESULTS 1 5.3 RAPID DRAWDOWN SLOPE STABILITY ANALYSIS 1	9 0 0 1 2 3 3 4
3.2.3 Rapid Drawdown Slope Stability Evaluation 1 INPUT DATA 4.1 CROSS-SECTION USED FOR ANALYSIS 1 4.2 MATERIAL PROPERTIES 1 4.2.1 Hydraulic Conductivity 1 4.2.2 Drained and Undrained Strength Parameters 1 4.2.2 Drained and Undrained Strength Parameters 1 5.1 STATIC SLOPE STABILITY EVALUATION RESULTS 1 5.2 PSEUDOSTATIC SLOPE STABILITY EVALUATION RESULTS 1 5.3 RAPID DRAWDOWN SLOPE STABILITY ANALYSIS 1 CONCLUSION	9 0 0 1 2 3 3 4 4
	 1.1 BACKGROUND AND SITE GEOMETRY. 1.2 1998 EVALUATION OF STABILITY AND REHABILITATION MEASURES

Geosyntec ^D	Written by:	EOA	Date	04/26/2023
consultants	Title of Computation:	Stability Analys	es of Lake F	Petit Dam
	New Seepage Collection System and			

Calc. No.: 01 Project:

Stability Analyses

Project No.: <u>TN9418</u> Task No: <u>03/02</u>

TABLE OF CONTENTS (Continued)

LIST OF TABLES

- Table 1Piezometer Target Values for Model Calibration
- Table 2
 Summary of Selected Geotechnical Parameters
- Table 3Summary of Calculated Factors of Safety for Slope Stability

LIST OF FIGURES

- Figure 1 Plan View Cross-Section A-A
- Figure 2 Cross-Section A-A
- Figure 3 Undrained Shear Strength Evaluation

LIST OF ATTACHMENTS

- Attachment 1 Site Seismic Evaluation
- Attachment 2 Geotechnical Data
- Attachment 3 Seepage Analysis Results
- Attachment 4 Slope Stability Analysis Results

Geosyntec ^D	Written by:	EOA	Date ()4/26/2023
consultants	Title of Computation:	Stability Analyse	s of Lake Petit	Dam
Calc. No.: <u>01</u> Project:	New Seepage Collection System and Stability Analyses	Project No.:	<u>FN9418</u> Tas	sk No: <u>03/02</u>

STABILITY ANALYSES OF LAKE PETIT DAM

1 PURPOSE AND SCOPE

This calculation package (Package) was prepared by Geosyntec Consultants, Inc. (Geosyntec) to document the stability of Lake Petit Dam (Dam) with respect to current stability criteria as defined by the Rules and Regulations of the State of Georgia, Rule 391-3-8-.09. This Package presents engineering calculations to evaluate seepage and slope stability of the Dam under the loading conditions described within the regulations described herein.

1.1 Background and Site Geometry

Lake Petit Dam is located within the Big Canoe development on Petit Creek, approximately 5.8 miles upstream of Marble Hill, Georgia (GA) and is owned and operated by Big Canoe Property Owners Association (POA). The reservoir formed by the Dam has a surface area of 107 acres (ac) at a normal pool elevation (El.) of 1,635.5 feet (ft) North American Vertical Datum of 1988 (NAVD88). Elevations reported in this Package are in relation to NAVD88 unless otherwise noted. The storage of the reservoir is approximately 4,235 ac-ft at normal pool elevation, as confirmed by the bathymetric survey conducted in March 2022 which was subsequently approved by GA Safe Dams Program (SDP) in August 2022 (Geosyntec 2022). The Dam has a maximum height of 126 ft measured vertically from the downstream toe, a crest length of approximately 908 ft, and a crest width of approximately 35 ft.

The downstream face of the Dam was designed with 2.5H:1V (horizontal to vertical) slopes, and with 10-ft wide benches at approximately 20-ft vertical intervals. The upstream face of the Dam was designed with a continuous 3.5H:1V slope.

The Dam has a trench drain system (i.e., internal drain system) under the downstream face and is located at approximate El. 1,520 ft. The internal drain system discharges into an outlet structure (i.e., impact basin) with an invert at El. 1,516.7 ft. Downstream of the Dam are the ballfields, which are estimated to be relatively free-draining downstream of the Dam.

1.2 <u>1998 Evaluation of Stability and Rehabilitation Measures</u>

In 1998, Geosyntec evaluated the stability of the Dam under static and seismic conditions. As part of the scope of work, Geosyntec conducted a subsurface

Geosyntec [▷]	Written by:	EOA	Date 04	/26/2023
consultants	Title of Computation:	Stability Analyse	es of Lake Petit D	Dam
Calc. No.: <u>01</u> Project: _	New Seepage Collection System and Stability Analyses	Project No.: _	TN9418 Task	No: <u>03/02</u>

investigation, installed dam safety instrumentation, and completed a laboratory testing program on soil samples of the Dam for strength and material characterization. Using the results of the field and laboratory investigation activities, Geosyntec developed a seepage and slope stability model of the Dam to evaluate its performance under normal and seismic loading conditions. The calculated slope stability factors of safety met the requirements of the GA SDP for the global steady-state and pseudostatic scenarios.

1.3 **Objective**

The 1998 report was submitted to and reviewed by the GA SDP; however, it was never formally accepted as the calculation of record. The purpose of this Package is to document an updated evaluation of the stability of the Dam under the loading conditions required by the Rules and Regulations of the State of Georgia, Rule 391-3-8-.09 for earthen embankments. Specifically, this Package documents an evaluation of the calculated factor of safety against instability for static and pseudostatic loading with steady-state seepage conditions, as well as rapid drawdown analysis.

The remainder of this Package is organized to present: (i) applicable rules and regulations; (ii) methodology; (iii) input data; (iv) analysis results; and (v) conclusions.

2 APPLICABLE RULES AND REGULATIONS

2.1 Loading Conditions

The criteria, defined on "*Rule 391-3-8-.09, Standards for the Design and Evaluation of Dams*", was considered in the slope stability calculations presented in this Package. The following minimum factors of safety can be considered as acceptable stability for the Dam:

- The calculated static factor of safety under the long-term steady-state seepage conditions (i.e., normal pool) must equal or exceed 1.5;
- The calculated pseudostatic (i.e., seismic or earthquake loading) factor of safety under the long-term steady-state seepage conditions must equal or exceed 1.1; and
- The calculated static factor of safety under the rapid drawdown conditions at the upstream side of the Dam must equal or exceed 1.3.

Geosyntec [▷]	Written by:	EOA	Date _	04/26/2023
consultants	Title of Computation:	Stability Analyse	es of Lake I	Petit Dam
Calc. No.: <u>01</u> Project:	New Seepage Collection System and Stability Analyses	Project No.:	TN9418	Task No: <u>03/02</u>

2.2 <u>Normal Pool</u>

Normal Pool is defined as the normal maximum operating range of the reservoir. For Lake Petit Dam, the Normal Pool is at El. 1635.5 ft.

2.3 <u>Earthquake Loading</u>

The Engineer Guidelines (2015) for the Safe Dams Program in GA states that a dam "shall be able to withstand seismic acceleration defined in the most current map for peak acceleration from a 2 percent exceedance in 50 years (i.e., 2475-year return period) earthquake." and "the minimum required seismic acceleration is 0.05g."

The methodology utilized for development of the site-specific earthquake loading, prepared in accordance with the state regulations are described in Section 3.2.2.

2.4 <u>Rapid Drawdown</u>

The Engineer Guidelines (2015) for the Safe Dams Program in GA states that the Dam, specifically the gated structure system, shall be designed to drain two-thirds of the reservoir volume at normal pool within 10 days, which constitutes the basis for selection of the lower reservoir level for a rapid drawdown analysis. As stated above, Normal Pool for the Dam is El. 1635.5 ft and the elevation at which one-third of the reservoir is still impounded is El. 1,602.0 ft.

The GA SDP's rules also reference the rapid drawdown case for a submerged downstream toe. This analysis was not included in this Package because the toe of the Dam is not submerged nor is it interpreted to become submerged during the design flood. During a flood event or discharge of the reservoir through the Spillway, it is unlikely to inundate the downstream side of the Dam due to the discharge point location and local topography of the ballfields and topographic relief downstream of the Dam. The Dam's spillway discharges into Petit Creek at approximately El. 1,514 ft and approximately 250 ft downstream of the impact basin. The next controlled level downstream is Lake Sconti Dam, which is approximately one mile downstream and has an embankment top elevation and normal pool at approximately El. 1,470.0 ft and 1,464.0 ft, respectively.

Geosyntec [▷]	Written by:	EOA	Date _	04/26/2023
consultants	Title of Computation:	Stability Analyse	s of Lake I	Petit Dam
Calc. No.: <u>01</u> Project:	New Seepage Collection System and Stability Analyses	Project No.:	ГN9418	Task No: 03/02

2.5 End of Construction

The GA SDP's rules also reference the end of construction case for stability following completion of dam construction. Stability of the Dam at the end of construction was not evaluated, as this dam has been constructed and in service for approximately 50 years.

3 METHODOLOGY

Geosyntec evaluated the stability of the tallest cross-section using limit equilibrium calculation procedures to assess the factor of safety. The pore water pressure for Normal Pool was computed with a steady-state seepage analysis. The sections below outline the methodology adopted for analysis.

3.1 <u>Seepage Analysis</u>

Seepage analyses were performed using the computer program SEEP/W, version 2019 (Geo-Slope, 2019a). SEEP/W uses the finite element method (FEM) for analyzing groundwater seepage problems in soil and rock. SEEP/W is capable of modeling saturated and unsaturated flow under steady-state and transient conditions.

The solution procedure for the FEM seepage model consists of defining the geometry by drawing regions that identify distinct lithologic units, assigning material parameters, and defining boundary conditions. The seepage model includes the entire embankment cross-section and underlying foundation units. A global element size of 2 ft was used for developing the FEM mesh. Low-order elements (i.e., three-node triangles and four-node quadrilaterals) were considered adequate for the FEM seepage model.

For the materials in the Dam, the hydraulic conductivities were calibrated within the range previously defined by Geosyntec (1998) until reaching a reasonable representation of the steady-state seepage condition, as interpreted from piezometers within the embankment. Piezometric readings from G-1, G-1B, G-2, P-2, P-4, P-6, and P-7 were used to compare the obtained total head from the model and the defined target value shown in Table 1. The target was selected from the mean value of the data ranging from 2020 to 2022 plus one standard deviation computed using the Three Sigma Rule (Grafarend 2006). While calibrating the seepage model, more weight was given to the piezometers close to the ground surface as they were interpreted to provide a better

Geosyntec [▷]	Written by:	EOA	Date _	04/26/2023
consultants	Title of Computation:	Stability Analyse	es of Lake F	Petit Dam
Calc. No.: <u>01</u> Project: _	New Seepage Collection System and Stability Analyses	Project No.: _	TN9418	Task No: <u>03/02</u>

representation of the phreatic surface; however, this resulted in conservative estimates of the total head (i.e., increased head) deeper within the Dam.

3.1.1 Boundary Conditions

3.1.1.1 <u>Reservoir Loading Condition</u>

The Normal Pool reservoir was simulated with a total head boundary condition set at El. 1,635.5 ft along the upstream face and reservoir of the Dam.

3.1.1.2 Far-Field Boundary Condition

The far-field (downstream) boundary condition for the seepage analyses was set approximately 130 ft downstream of the toe of the Dam. The downstream boundary condition was assumed to be equal to El. 1,516.7 ft and defined as a total head boundary at the far downstream edge of the seepage model. This elevation corresponds to the invert of the trench drain located at the impact basin.

3.1.1.3 Internal Drain System

An internal drain system is located beneath the downstream face of the Dam and collects seepage from the embankment which is connected to the downstream toe via pipes installed during the original construction. This internal drain has been modeled as a discrete point within cross-section A-A with a total head boundary condition. The total head boundary condition allows seepage to exit the model at the location and appropriately represents the internal drain system.

The total head boundary condition assigned to the internal drain system was El. 1,535.0 ft. This boundary condition was selected based on calibration of the seepage model, in which the total head was varied until reaching a reasonable representation of the seepage model based on the target values shown in Table 1 for the piezometer readings.

3.2 <u>Slope Stability Analysis</u>

Limit-equilibrium slope stability analyses were performed using the computer program SLOPE/W, version 2019 (Geo-Slope, 2019b). SLOPE/W is a 2D slope stability computer program which can be used to employ both rigorous and non-rigorous limit-

Geosyntec [▷]	Written by:	EOA	Date _	04/26/2023
consultants	Title of Computation:	Stability Analyse	es of Lake I	Petit Dam
Calc. No.: <u>01</u> Project:	New Seepage Collection System and Stability Analyses	Project No.:	TN9418	Task No: <u>03/02</u>

equilibrium analysis methods. SLOPE/W analyses uses the pore water pressures computed from the seepage analysis performed with SEEP/W.

The method described by Morgenstern-Price (1965) was used to conduct limitequilibrium slope stability analyses. Morgenstern-Price's method utilizes interslice forces which consider both shear and normal interslice forces. Both moment and force equilibrium are satisfied for individual slices as well as the entire soil mass.

Circular failure surfaces were considered for limit-equilibrium slope stability analyses. For circular failure surfaces, ranges of entry and exit locations for potential slip surfaces were defined along the analyzed slope. The search for the critical slip surface was performed by initially selecting a large range of entry and exit locations, and then refining these ranges once the likely locations of critical entry and exit locations were identified. The entry and exit ranges were divided into 30 increments with 4 radius increments to evaluate potential failure surfaces.

The minimum sliding mass depth was set at 10 ft in order to avoid results of surficial, localized failures that are not likely to impair the overall embankment stability. These surficial failures can typically be corrected by routine maintenance activities and are not considered to pose a threat to the safety of the Dam. Because unsaturated shear strength is not assigned in these analyses, the effects of negative pore water pressures on shear strength are conservatively ignored.

3.2.1 Static Slope Stability Evaluation

Geosyntec performed static slope stability calculations for both downstream and upstream slopes, using the drained strength parameters for the defined materials and pore water pressures determined from steady-state seepage analyses described above.

3.2.2 Pseudostatic Slope Stability Evaluation

The pseudostatic analysis performed herein accounted for a horizontal seismic loading on the Dam, for both downstream and upstream slopes. The analysis was performed using the defined undrained strength parameters to account for rapid loading conditions within the cohesive soils and effective stress parameters were used for the free-draining materials. To conduct a pseudostatic analysis, a horizontal seismic coefficient (K_s) was computed. K_s was calculated using the method proposed by Bray and Travasarou (2009), an industry-accepted method for analyzing the seismic performance of

Geosyntec ^D	Written by:	EOA	Date _	04/26/2023
consultants	Title of Computation:	Stability Analyse	es of Lake F	Petit Dam
Calc. No.: <u>01</u> Project:	New Seepage Collection System and Stability Analyses	Project No.:	TN9418	Task No: <u>03/02</u>

embankments and slopes. This method utilizes simplified, semiempirical procedures to evaluate the performance of the Dam during earthquake loading.

Seismic coefficient calculations, presented in Attachment 1, are based on the following procedure.

Step 1: Estimate the Fundamental Period

The initial fundamental period (T_s) of the sliding mass was estimated using the following:

$$T_s = 2.6 \text{H/V}_s \tag{1}$$

where H is the average height of the potential sliding mass, and V_s is the average shear wave velocity of the sliding mass. For this Package, the average height of the potential sliding mass was taken as the height of the Dam (i.e., 126 ft). V_s was calculated as 1,148 ft/s using shear wave velocity tests conducted in boring G-1B (Geosyntec 1998). This data is provided in Attachment 2. The computed T_s for the sliding mass is **0.28 sec**.

Step 2: Estimate the Pseudostatic Seismic Coefficient

The K_s was calculated using the equations and relationships provided by Bray and Travasarou (2009):

$$K_{s} = \exp[(-a + b^{0.5})/0.665]$$
(2a)

where variables a and b are calculated using the following relationships:

$$a=2.83-0.566\ln(S_a)$$
 (2b)

$$b=a^{2}-1.33\{\ln(D)+1.10-3.04\ln(S_{a})+0.244[\ln(S_{a})]^{2}-1.5T_{s}-0.278(M-7)-\epsilon\}$$
(2c)

where:

• S_a is the 5 percent damped elastic spectral acceleration at the degraded period of 1.5T_s of the sliding mass;

Geosyntec ^D	Written by:	EOA	Date	04/26/2023
consultants	Title of Computation:	Stability Analyse	s of Lake P	etit Dam
Calc. No.: <u>01</u> Project: _	New Seepage Collection System and Stability Analyses	Project No.:	ГN9418	Task No: <u>03/02</u>

- ε is the normally distributed variable to account for the probability of exceedance;
- M is the earthquake's moment magnitude; and
- D is the maximum allowable displacement in centimeters (cm) of the sliding mass.

The site's design spectra was estimated using the online National Seismic Hazard Model (NSHM) Hazard Tool made available by the United State Geological Survey (USGS), which presents a Uniform Hazard Response Spectra (UHRS) created from the National Seismic Hazard Model (USGS 2018). The UHRS analysis was performed using a Site Class D based on ASCE 7.16 (ASCE 2017) according to the V_s. Recent guidelines, such as ASCE 7.22 (ASCE 2021), provide boundary Site classes depending on the V_s. For the Dam, a Site Class C/D was estimated with the most recent guideline; however, Geosyntec conservatively adopted Site Class D in order to incorporate more conservative estimates of ground shaking at the site. The S_a at the degraded period (1.5T_s) of the Dam is **0.31 g** for a Site Class D. The estimated UHRS is presented in Attachment 1.

The normally distributed variable (ε) is estimated from a normal distribution function which accounts for the probability of exceedance of the selected displacement threshold (i.e., D). For example, a 50 percent probability of exceedance represents ε =0, while a 16 percent probability of exceedance represents ε =1. In this Package, a 10 percent probability of exceedance was selected (i.e., ε =1.32).

The estimated pseudostatic coefficient is modified based on the moment magnitude of the earthquake (M) selected for analysis. Selection of the magnitude is based upon regional sources of ground motions and typically ranges between 6.5 and 7.5. While the Site is in a region with relatively low seismic hazards, Geosyntec conservatively adopted an earthquake with a moment magnitude **7.0** for analysis and estimation of pseudostatic coefficients.

For embankments, the industry standard for the maximum allowable displacement of earthen dams is 60 cm (approximately 2 ft) during seismic events (FEMA, 2005). Based on the Bray and Travasarou (2009) method, the allowable displacement selected herein (i.e., D=2 ft) corresponds to a K_s of 0.054. Multiple analyses were conducted for the pseudostatic stability to evaluate the sensitivity of the model to seismic loading,

Geosyntec ^D	Written by:	EOA	Date _	04/26/2023
consultants	Title of Computation:	Stability Analyse	es of Lake F	Petit Dam
Calc. No.: <u>01</u> Project:	New Seepage Collection System and Stability Analyses	Project No.:	TN9418	Task No: <u>03/02</u>

specifically for the downstream slope (i.e., most critical slope under an earthquake). Initially, the allowable displacement was varied from 10 to 100 cm to compute the K_s with the Bray and Travasarou (2009) method. Additionally, the GA SDP's minimum seismic acceleration of 0.05 g was evaluated as part of the sensitivity analysis. Then, slope stability analyses were performed to determine the factor of safety for each value of K_s . The analysis was also conducted to compute the yield coefficient (K_y) for the Dam. K_y is equal to a horizontal seismic acceleration coefficient that results in a factor of safety equal to one (i.e., the acceleration above which produce deformations in a Newmark analysis).

3.2.3 Rapid Drawdown Slope Stability Evaluation

Rapid drawdown conditions occur when a reservoir level drops rapidly, not allowing for relatively impermeable soils within the embankment to drain. Rapid drawdown decreases the stabilizing effect of the reservoir on the slope, while undrained strengths still govern slow-draining soils within the embankment, resulting in an extreme loading condition on the embankment. The three-stage procedure described by Duncan et al. (1990) is used for the analysis of the rapid drawdown condition:

- Stage 1: Prior to drawdown, steady-state seepage conditions are used to calculate effective consolidation stresses on a failure surface of interest.
- Stage 2: Following drawdown, stability analysis is performed on the failure surface of interest using undrained shear strengths and total-stress analysis. Interpolation is used to estimate undrained shear strength based on effective principal stress ratios after consolidation and at failure.
- Stage 3: If drained shear strengths are less than undrained shear strengths, stability analysis is performed using drained shear strengths, assuming excess pore water pressures induced due to drawdown have dissipated.

This process may then be repeated for other failure surfaces to determine the critical slip surface for sudden drawdown. SLOPE/W automatically performs the previously described stages and reports the critical factor of safety computed for the slope.

To conduct the rapid drawdown analysis, two piezometric lines were used: one for the pre-drawdown steady-state condition (i.e., at El. 1,635.5 ft) and one for the post-drawdown steady-state condition (i.e., at El. 1,602 ft), based on the requirement of

Geosyntec [▷]	Written by:	EOA	Date _	04/26/2023
consultants	Title of Computation:	Stability Analyse	s of Lake I	Petit Dam
Calc. No.: <u>01</u> Project:	New Seepage Collection System and Stability Analyses	Project No.:	ГN9418	Task No: <u>03/02</u>

draining two-thirds of the reservoir volume and then the procedure described above was implemented.

4 INPUT DATA

4.1 Cross-Section Used for Analysis

One two-dimensional (2D) cross-section was developed for the seepage and slope stability analyses of the Dam. The cross-section A-A is located along the transverse centerline of the Dam as shown in Figure 1. Cross-section A-A is aligned with existing piezometers installed at the downstream face of the Dam (i.e., piezometers in boring locations G-1, G-1B, G-2, P-2, P-4, P-6, and P-7).

Figure 2 shows the cross-section adopted for the analysis. The surface elevations of the downstream face were developed from a survey of the Dam conducted in May 2021. The slopes of the downstream face were measured to range from 2.2H:1V to 2.5H:1V. The steeper slopes were observed close to the toe of the Dam and the crest. The surface elevation of the upstream face of the Dam was developed from a bathymetric survey of the reservoir conducted in March 2022. The overall slope of the upstream face was measured as 3.5H:1V.

The Dam consists of a shell and core with an underlying saprolite and bedrock. The ballfields are located at the downstream side of the Dam. These subsurface conditions at the Dam were established using information from the following historic sources: (i) boring logs from the 1998 field investigation conducted by Geosyntec and Piedmont Geotechnical Consultants, Inc.; (ii) boring logs from field investigations prior to the construction of the Dam.; (iii) topographic map of the area prior to the construction of the Dam; and (iv) design drawings for the Dam.

4.2 <u>Material properties</u>

Geosyntec estimated material parameters for analysis based upon a review of previously defined material parameters (Geosyntec 1998) and laboratory test results. As part of the 1998 field investigation, samples collected from the shell and core of the Dam were analyzed in the laboratory for index properties and strengths using isotropic consolidated undrained triaxial compression (ICU-TXC) tests. This data is provided in Attachment 2. Table 2 presents a summary of the material properties selected for the

Geosyntec [▷]	Written by:	EOA	Date	04/26/2023
consultants	Title of Computation:	Stability Analyse	es of Lake P	Petit Dam
Calc. No.: <u>01</u> Project:	New Seepage Collection System and Stability Analyses	Project No.: _	TN9418	Task No: <u>03/02</u>

evaluations performed herein. The following subsections present the properties for the subsurface conditions at the Dam used in the seepage and slope stability analyses.

4.2.1 Hydraulic Conductivity

Dam Shell

Based on results from the grain size analyses conducted on Dam shell material, the shell is a silty sand classified as SM based on the Unified Soil Classification System (USCS). The average unit weight (γ) of the shell is 125 pounds per cubic foot (pcf). A vertical hydraulic conductivity (k_V) of 1.6 x10⁻⁵ ft/s (4.9x10⁻⁴ cm/s) and an anisotropy ratio (k_V/k_x) of 0.5 for the Dam shell material were used. The hydraulic conductivity was calibrated from the seepage model to reasonably match the target total heads from the piezometers presented in Table 1.

Dam Core

Based on results from the grain size analyses conducted on Dam core material collected, the core is a sandy silt classified as ML based on the USCS. A γ =130 pcf, a k_V of 3.3 x10⁻⁶ ft/s (1.0x10⁻⁴ cm/s), and an anisotropy ratio of 0.1 for the Dam core material were used. Similar to the shell, the hydraulic conductivity was calibrated from the seepage model to reasonably match the total heads from the piezometers.

Saprolite

The upstream saprolite was assumed to be relatively impermeable compared to the Dam shell and core. $k_V = 3.3 \times 10^{-9}$ ft/s (1.0x10⁻⁷ cm/s) for the upstream saprolite material was used while the downstream saprolite was modeled with $k_V = 1.6 \times 10^{-6}$ ft/s (4.9x10⁻⁵ cm/s). The anisotropy ratio assumed for the material was 1.0.

Ballfield

In the stability analyses, the ballfield soils have been modeled with γ =125 pcf, $k_V = 1.6 \times 10^{-3}$ ft/s (4.9x10⁻² cm/s), and an anisotropy ratio of 1.0. The hydraulic conductivity properties were calibrated based on the seepage model to properly represent a free draining material typically for ballfields.

Bedrock

Geosyntec ^D	Written by:	EOA	Date	04/26/2023
consultants	Title of Computation:	Stability Analyse	es of Lake Pe	tit Dam
Calc. No.: <u>01</u> Project:	New Seepage Collection System and Stability Analyses	Project No.:	TN9418 T	ask No: 03/02

In the stability analyses, the bedrock was modeled as impenetrable. The bedrock was assumed to be relatively impermeable compared to the Dam shell and core. $k_V = 3.3 \times 10^{-9}$ ft/s was used for this material. The assumed hydraulic conductivity is supported by the observation that no boils or other indications of upward seepage were observed in the tailwater creek below the Dam (Geosyntec 1998).

4.2.2 Drained and Undrained Strength Parameters

Dam Shell

Based on the dam shell ICU-TXC tests, the effective parameters at the ultimate strength condition were lower than the peak, with a range for the friction angle from 34 to 37 degrees (deg). Geosyntec selected effective friction angle (ϕ ') of 34 deg and no cohesion (c') for analysis.

For the current evaluation, Geosyntec adopted the maximum effective principal stress ratio (i.e., maximum obliquity) as the failure criterion for individual laboratory tests results and re-interpreted the undrained strength characterization. Figure 3 presents failure points of individual triaxial laboratory tests based on the criterion of maximum obliquity. A linear relationship was used to define the undrained shear strengths for both the shell and core. A total stress friction angle (ϕ) of 23 deg and a cohesion (c) of 1,000 psf were selected.

Dam Core

The effective stress parameters, $\phi'=32$ deg and c'=0 psf, were selected based on the evaluation of the ICU-TXC tests. The undrained parameters, $\phi=23$ deg and c=1,000 psf, were obtained for the core as shown on Figure 3 and described in the previous section.

Saprolite

In the stability analyses, the saprolite has been modeled differently at the upstream and downstream of the Dam. The upstream saprolite was modeled as impenetrable, while the downstream saprolite was modeled with γ =125 pcf and drained shear strengths of ϕ '=35 deg and c'=0 psf. These parameters are considered conservative based on the high SPT blow counts measured in the material.

Ballfield

Geosyntec [▷]	Written by:	EOA	Date	04/26/2023
consultants	Title of Computation:	Stability Analyse	es of Lake F	Petit Dam
Calc. No.: <u>01</u> Project:	New Seepage Collection System and Stability Analyses	Project No.:	TN9418	Task No: <u>03/02</u>

The drained shear strengths of $\phi'=32$ deg and c'=0 psf were selected based on typical values of free draining materials judged to representative of fill common for roadway and ballfield construction.

Bedrock

Bedrock was assumed to be impenetrable for slope stability computations.

5 ANALYSIS RESULTS

The calculated phreatic surface and total head contours from the seepage analysis are presented in Attachment 3. For the steady-state seepage conditions analyzed, the calculated total heads were higher than the target values presented in Table 1 at several piezometer locations. The computed higher total heads represent a conservatively representative scenario of the Dam's internal seepage, and the results were considered appropriate for the stability analyses.

5.1 <u>Static Slope Stability Evaluation Results</u>

The calculated factor of safety for steady-state seepage slope stability analysis are summarized in Table 3 and the results are presented in Attachment 4. The calculated factor of safety, for both upstream and downstream slopes, are greater than the minimum required value for a long-term steady-state condition.

5.2 <u>Pseudostatic Slope Stability Evaluation Results</u>

The calculated factor of safety for steady-state seepage slope stability under seismic conditions (i.e., pseudostatic analysis) are summarized in Table 3 and the results are presented in Attachment 4.

For the allowable displacement of 60 cm (i.e., 2 ft), a K_s of 0.054 g caused a factor of safety of **1.5** and **2.4** for the downstream and upstream slopes, respectively. Based on the sensitivity analysis, a displacement equal to 100 cm (i.e., approximately 3 ft) resulted in seismic coefficients lower than the state-required seismic acceleration (i.e., 0.05g) for the design and evaluation of dams.

Geosyntec also evaluated a more conservative allowable displacement of 10 cm (i.e., 4 inches). With an allowable displacement of 4 inches, a K_s equal to 0.14 g was calculated, and on the calculated factor of safety was 1.2 for the downstream slope.

Geosyntec [▷]	Written by:	EOA	Date 04/26/2023
consultants	Title of Computation:	Stability Analyses of Lake Petit Dam	
Calc. No.: <u>01</u> Project: _	New Seepage Collection System and Stability Analyses	Project No.:	<u>ГN9418 Таѕк №: 03/02</u>

When using the GA SDP's minimum seismic acceleration of 0.05 g, a pseudostatic factor of safety of 1.5 was computed for the downstream slope of the Dam. The computed K_y was 0.2 g for a factor of safety equal to one. Note that the K_y is higher than the estimated peak ground acceleration at the site (from the UHRS) of 0.18 g. Therefore, the embankment is considered stable under the seismic loading conditions evaluated herein.

5.3 Rapid Drawdown Slope Stability Analysis

The calculated factor of safety for rapid drawdown condition at cross-section A-A is summarized in Table 3 and the results are presented in Attachment 4.

Assuming a sudden release of two-thirds of the reservoir volume, the calculated factor of safety of 2.1 at the upstream slope is greater than the minimum required value of 1.3. Therefore, the embankment is considered stable under rapid drawdown loading condition considered in this evaluation.

6 CONCLUSION

Geosyntec performed seepage and slope stability analyses to evaluate and document the stability of Lake Petit Dam and predicted performance during an earthquake and following a rapid drawdown of the reservoir. Geosyntec reviewed the existing geotechnical and instrumentation data at the Site and updated the geotechnical characterization of the respective geologic and dam units. Additionally, Geosyntec developed seismic loading parameters in accordance with current guidelines for conducting pseudostatic analyses.

The calculated factors of safety exceed the minimum required values for all load cases as described herein and meets the slope stability criteria established within the GA SDP Guidelines. There are currently no known issues or concerns from a slope stability perspective.

7 **REFERENCES**

ASCE, 2017. "Minimum design loads and associated criteria for buildings and other structures." ASCE 7.16. Reston, VA: ASCE.

ASCE, 2022. "Minimum design loads and associated criteria for buildings and other structures." ASCE 7.22. Reston, VA: ASCE.

Geosyntec [▷]	Written by:	EOA	Date	04/26/2023
consultants	Title of Computation:	Stability Analyse	es of Lake P	etit Dam
Calc. No.: <u>01</u> Project:	New Seepage Collection System and Stability Analyses	Project No.: _	TN9418	Task No: <u>03/02</u>

Bray, J.D., and Travasarou, T., 2009. "Pseudostatic Coefficient for Use in Simplified Seismic Slope Stability Evaluation". Journal of Geotechnical and Geoenvironmental Engineering, 135(9), 1336–1340.

Duncan, J.M., Wright, S.G., and Wong, K.S., 1990. "Slope Stability during Rapid Drawdown". Vol. 2. BiTech Publishers Ltd. Vancouver, British Columbia, Canada.

FEMA, 2005. "Federal Guidelines for Dam Safety. Earthquake Analyses and Design of Dams". FEMA 65.

Geo-Slope, 2019a. SEEP/W – Finite Element Seepage Analysis Software. Geo-Slope International, Ltd., Calgary, Alberta, Canada.

Geo-Slope, 2019b. SLOPE/W – Slope Stability Analysis Software. Geo-Slope International, Ltd., Calgary, Alberta, Canada.

GA EPD, 2015. "Engineer Guidelines".

Geosyntec, 1998. "Evaluation of Stability and Rehabilitation Measures, Lake Petit Dam" Atlanta, Georgia.

Geosyntec, 2022. "Lake Petit Volume Update – Permit #112-009-00462".

Grafarend, 2006. "Linear and nonlinear models: fixed effects, random effects, and mixed models". Walter de Gruyter, Berlin, Germany.

Morgenstern and Price, 1965. "The analysis of the stability of general slip surfaces", Geotechnique, 15 (1), pp. 79-93.

USGS. (2018). National Seismic Hazard Model.

TABLES

Data Analysis	Mean	Std. Dev.	Target ¹
P-2A	1626.2	0.5	1626.7
P-2B	1611.1	0.9	1611.9
P-2C	1596.1	0.6	1596.7
P-4A	1588.5	2.8	1591.3
P-4B	1573.0	2.1	1575.1
P-4C	1570.6	1.4	1571.9
P-6A	1555.1	0.9	1556.0
P-6B	1538.9	0.8	1539.8
P-6C	1554.2	1.0	1555.1
P-7A	1536.1	0.5	1536.6
P-7B	1522.6	0.4	1523.0
P-7C	1527.6	0.4	1528.0
G-1A Shallow	1598.4	1.9	1600.3
G-1A Deep	1579.5	1.6	1581.0
G-1B	1585.3	1.3	1586.6
G-2 Shallow	1570.5	2.7	1573.2
G-2 Intermediate	1559.9	1.5	1561.4
G-2 Deep	1553.4	0.8	1554.2

 Table 1 – Piezometer Target Values for Model Calibration

Notes:

1. Target total head for the piezometers was selected as the Mean + 1 standard deviation of the piezometers' measured data over the last three years, which represents the upper range of 68% of the data using the Three Sigma Rule (Grafarend 2006).

Material Type	Total Unit Weight	Effectiv Stre Paran	e Shear ngth neters	Undrained Shear Strength Parameters		Hydraulic Conductivity		ty
	γ (naf)	c'	(dog)	C (nsf)	¢ (dog)	k _h	$\mathbf{k}_{\mathbf{v}}$	k _v / k _h
Bedrock	(pci)	(psi) I	mpenetrable	(ps 1)	(ueg)	3.3E-09	3.3E-09	1.0
Ballfield	125	0	32	-	-	1.6E-03	1.6E-03	1.0
Dam Core	130	0	32	1,000	23	3.3E-05	3.3E-06	0.1
Dam Shell	125	0	34	1,000	23	3.3E-05	1.6E-05	0.5
Saprolite D/S	125	0	35	-	-	1.6E-06	1.6E-06	1.0
Saprolite U/S	Impenetrable				3.3E-09	3.3E-09	1.0	

Table 2 – Summary of Selected Geotechnical Parameters

Acronyms:

D/S: Downstream U/S: Upstream

Loading Condition	Required Minimum Factor of Safety ¹	Calculated Factor of Safety ²
Steady-State Seepage Stability (Downstream)	1.5	1.6
Steady-State Seepage Stability (Upstream)	1.5	2.5
Steady-State Seepage Pseudostatic Stability (Downstream)	1.1	$1.5 (D=60 \text{ cm})^3$
Steady-State Seepage Pseudostatic Stability (Upstream)	1.1	$2.4 (D=60 \text{ cm})^3$
Rapid Drawdown (Upstream) Stability	1.3	2.1

Table 3 – Summary of Calculated Factors of Safety for Slope Stability

Acronyms:

None.

Notes:

1. Required minimum factor of safety are from the GA SDP Rules for Dam Safety, Rule 391-3-8-.09.

2. Results of stability analysis for the loading conditions are presented in Attachment 2.

3. The pseudostatic slope stability for the upstream slope was computed for an allowable displacement of 60 cm for a K_s equal to 0.054 g.

FIGURES

C:_GEOPWDS01\DMS14761\TN9418.03-MD-EXPORT (1998 XSECTION) - Last Saved by: Rodney.Noble on 1/2

ATTACHMENT 1 Site Seismic Evaluation

Average Shear	Wave	Velocity	Calculation
----------------------	------	----------	-------------

			Shear Wave Velocity
Shear Wave			by Layer
Velocity	Depth		(Denominator of EQ
(ft/sec)	(ft)	Material Description	20.4-1)*
	0		
648	2.5	SILT	0.00386
816	7.5	SILT	0.00613
957	12.5	SILT and fine to medium sand	0.00522
1333	17.5	SILT and fine to medium sand	0.00375
1074	22.5	SILT and fine to medium sand	0.00466
1105	27.5	SILT and fine to medium sand	0.00452
1466	32.5	SILT and fine to medium sand	0.00341
805	37.5	SILT and fine to medium sand	0.00621
1025	42.5	SILT and fine to medium sand	0.00488
1447	47.5	SILT and fine to medium sand	0.00346
1140	52.5	SILT, very fine sand and gravel	0.00439
1293	57.5	SILT, very fine sand and gravel	0.00387
1178	62.5	SILT, very fine sand and gravel	0.00424
1846	67.5	SILT, very fine sand and gravel	0.00271
1342	72.5	SILT, very fine sand and gravel	0.00373
882	77.5	SILT, very fine sand and gravel	0.00567
1324	82.5	SILT, very fine sand and gravel	0.00378
1501	87.5	SILT, very fine sand and gravel	0.00333
1471	92.5	SILT, very fine sand and gravel	0.00340
1305	96.5	SILT	0.00307
1422	100.5	SILT	0.00281

Notes:

*Average Shear Wave Velocity, EQ 20.4-1, page 204, ASCE 7-16.

$$\overline{\nu}_s = \frac{\sum_{i=1}^n d_i}{\sum_{i=1}^n \frac{d_i}{\nu_{si}}}$$
(20.4-1)

1) The values for the shear wave velocity and depth have been exported from the Law 1998 report, boring G-1B.

2) Based on the Average Shear Wave Velocity (\overline{v}_s) the site would be classified as Stiff Soil (Class D). Please see Table 20.3.1 (ASCE 7-16) for Site Classification based on the average shear wave velocity.

Site Class	ν _s	Ñ or N _{ch}	<u></u> s _u
A. Hard rock	>5,000 ft/s	NA	NA
B. Rock	2,500 to 5,000 ft/s	NA	NA
C. Very dense soil and soft rock	1,200 to 2,500 ft/s	>50 blows/ft	$>2,000 \text{ lb/ft}^2$
D. Stiff soil	600 to 1,200 ft/s	15 to 50 blows/ft	1,000 to 2,000 lb/ft ²
E. Soft clay soil	<600 ft/s	<15 blows/ft	<1,000 lb/ft ²
	Any profile with more than — Plasticity index PI > 1 — Moisture content w ≥ — Undrained shear stren	10 ft of soil that has the following characteristic formula (20, 40%, agth $\bar{s}_{\mu} < 500 \text{ lb} / \text{ft}^2$	aracteristics:
F. Soils requiring site response analysis in accordance with Section 21.1	See Section 20.3.1		

Written by and Date: Title: Project Title: Project No.:

EOA; 02/18/2023 Uniform Hazard Response Spectra New Seepage Collection System and Stability TN9418 Task No: 03/02

Uniform Hazard Response Spectra Data

Intensity Measure Type (IMT): 2475 (2% in 50) **Peak Ground Acceleration (PGA):** 0.184 g

	Cround
	Ground
Spectral Period	Motion
(s)	(g)
0.01	0.198
0.02	0.285
0.03	0.334
0.05	0.412
0.075	0.443
0.1	0.460
0.15	0.436
0.2	0.405
0.25	0.380
0.3	0.352
0.4	0.314
0.5	0.290
0.75	0.240
1	0.201
1.5	0.136
2	0.101
3	0.062
4	0.043
5	0.033
7.5	0.020
10	0.013

Site Location

Notes: 1) Data Source:

NSHM (USGS 2018).

Seismic Coefficient Calculation

Step 1:

Calculation of Initial Fundamental Period (T_s)

Pseudostatic Analysis in 1D or 2D:

1D: The case of a relatively wide potential sliding mass that is shaped like a trapezoid where:

 $T_s = 4H/V_s$

$$\begin{array}{c} H = \fbox{126} & \text{ft} & <- \textit{Height of Dam.} \\ V_S = \fbox{1148} & \text{ft/sec} & <- \textit{Average shear wave velocity} \\ T_S = \fbox{0.439} & s \end{array}$$

2D: The case of a triangular-shaped sliding mass that largely has a 2D response, where:

 $T_{s} = 2.6 H/V_{s}$

$$H = 126 \text{ ft } <- \text{ Height of Dam.}$$

$$V_{S} = 1148 \text{ ft/sec } <- \text{ Average shear wave velocity.}$$

$$T_{S} = 0.285 \text{ s } <- \text{ Due to the geometry of the dam and 2D response expected, this } T_{s} \text{ value is used.}$$

Step 2:

Calculation of the Seismic Coefficient (K_s)

$$\begin{split} & K_{\rm S} = \exp[(-a + b^{0.5})/0.665] \\ & a = 2.83 - 0.566 \ln(S_{\rm a}) \\ & S_{\rm a} \ at \ 1.5T_{\rm s} = 0.428 \\ & S_{\rm a} = 0.306948 \\ & S_{\rm pectral} \ Ground \ Motion \\ \hline 0.4 \ 0.313671 \\ \hline 0.5 \ 0.289592 \\ \hline 0.428 \ 0.306948 \\ < - \ Linear \ interpolation \ between \ 0.4 \\ & a = 3.498 \\ & and \ 0.5 \ Spectral \ Periods. \\ & b = a^2 - 1.33 \{\ln(D) + 1.10 - 3.04\ln(S_{\rm a}) + 0.244[\ln(S_{\rm a})]^2 - 1.5T_{\rm s} - 0.278(M - 7) - \epsilon\} \\ & a = 3.498 \\ & D = 20 \\ & cm \\ & S_{\rm a} = 0.306948 \\ & T_{\rm s} = 0.285 \\ & M = 7 \\ & \epsilon = 1.32 \\ & S_{\rm s} = 0.285 \\ & M = 7 \\ & s = 1.32 \\ & S_{\rm s} = 0.285 \\ & M = 7 \\ & c - Normally \ distributed \ random \ variable \ with \ zero \ mean \ and \ standard \ deviation \ of \ 0.66 \ for \ 86th \ percentile, \ and \ 1.32 \ for \ 95th \ percentile. \end{split}$$

Notes:

Input values/data.

Output results.

1) The seismic coefficients used in the Pseudostatic Analyses were calculated using a simplified semiempirical predictive procedure (Bray & Travasarou, 2009).

2) The example seismic coefficient calculation presented above was conducted with the assumption of a maximum allowable displacement of 20 cm (approximately 7.9 inches).

3) For the Pseudostatic Analyses, the following parameters are used when calculating the seismic coefficients: H, V_s , T_s , S_a , M, and ϵ .

3) S_a at a degraded 1.5T_s procured from the NSHM Hazard Tool (USGS, 2018).

4) A summary table with calculated seismic coefficients for D = 100, 75, 60, 30, 20, and 10 cm is presented below.

D (am)	T 7
(cm)	K _s
100	0.038
60	0.047
30	0.081
20	0.101
10	0.140

ATTACHMENT 2 Geotechnical Data

Shear Wave Velocity Profile

Summary of Standard Penetration Test, Triaxial Shear Test, and Index Property Test Results

TABLE 2-1

SUMMARY OF OCTOBER 1998 GEOSYNTEC FIELD INVESTIGATION PROGRAM

		D	rilling			Samplin	ıg		Instrumentation and Additional Testing		
Boring No.	Location (Figure 2-1)	Total Depth	Method	Terminate	Approximate Sequence	No. Shelby Tubes	No. Pitcher Barrel	No. SPT Tests	Piezometers	D-hole Shear Wave	
G-1A	Dam centerline (offset 10 ft from G-1B)	60 ft	8" bent. mud rotary	Within dam fill	None	0	0	0	1 in. PVC casing (2 installed)		
G-1B	Dam centerline	114 ft	8" bent. mud rotary	At bedrock surface	SPT - 5' intervals Tubes - 20' intervals	4-shell	1-shell 1-core	12-shell 2-core 1-saprolite	4 in. PVC casing (1 installed)	Within 4 in PVC casing	
G-2	Dam centerline	68 ft	8" rotary	At bedrock surface	SPT - 5' intervals Tubes - 20' intervals	2-shell	3-shell	4-shell 1-saprolite	1 in. PVC casing (3 installed)		
G-3	115 ft west of dam centerline, above valley bottom	47 ft	HSA - 4.25" ID	Within dam fill	SPT - 5' intervals Tubes - 15' intervals	5-shell	0	6-shell	1 in. PVC casing (1 installed)		
G-4	235 ft west of dam centerline, above right abutment	55 ft	HSA - 4.25" ID (upper 30 ft) and 4" bent. mud rotary (lower 25 ft)	Within natural soil below dam fill	SPT - 5' intervals Tubes - 15' intervals	2-shell	3-shell	6-shell			
G-5	200 ft east of dam centerline, above left abutment	67 ft	8" bent. mud rotary	Within dam fill	SPT - 5' intervals Tubes - 15' intervals	5-core	1-core	2-shell 7-core		Within 4 in PVC casing	

HSA = hollow stem auger, bent. = bentonite, PVC =polyvinyl chloride

TABLE 2-2

SUMMARY OF SPT N-VALUE CORRELATION TO EFFECTIVE STRESS FRICTION ANGLE

Material	ø' from N -	Kulhaway ar	nd Mayne, 199	0	ϕ ' from (N ₁) ₆₀ - Hatanaka and Uchida, 1996						
Boring	no. tests	minimum	average.	st. deviation	No. tests	minimum	average.	st. deviation			
Shell			4								
G-1B	14	38	41	1	14	38	41	2			
G-2	2	36	39	3	2	37	39	3			
G-3	5	38	42	3	7	37	40	2			
G-4	5	37	40	3	7	35	38	2			
G-5	-		-	-	1	43	43	-			
	total	weighted	weighted	range	total	weighted	weighted	range			
	26	avg. 37.7	avg. 40.8	1 to 3	31	avg. 37.2	avg. 40.0	2 to 3			
Core											
G-1B	4	34	35	- 1	4	35	36	1			
G-5	14	29	34	3	14	31	35	2			
	total	weighted	weighted	range	total	weighted	weighted	range			
	18	avg. 30.1	avg. 34.2	1 to 3	18	avg. 31.9	avg. 35.2	1 to 2			
Saprolite											
G1-B	2	44	42	0	2	44	44	0			

TABLE 3-1

LABORATORY TESTING RESULTS

SPE	SPECIMEN IDENTIFICATION				TRIAXIAL SHEAR TESTING						INDEX PROPERTY TESTING						
				Speci	men Initial	Conditions	Peak S Con	Strength dition	Ultimato Con	e Strength dition	Atterb	erg Limits	Gr	ain Size (perc	Analy ent)	sis	USCS Class.
Test No.	Boring No.	Sample Depth (ft)	Core or Shell Material	Water Content (%)	Dry Unit Weight (pcf)	Effective Consolidation Stress ⁽¹⁾ (psi)	Deviator Stress ⁽²⁾ (psi)	Pore Pressure ⁽³⁾ (psi)	Deviator Stress ⁽²⁾ (psi)	Pore Pressure ⁽³⁾ (psi)	Liquid Limit	Plasticity Index	gravel	sand	silt	clay	
Α	G-4	47-50	shell	25.9	103.1	41.5	79.0	17.5	113.1	1.6	NP	NP	12	58	23	7	SM
В	G-4	15-16	shell	17.7	97.9	13.6	78.0 ⁽⁴⁾	-4.0	81.3 ⁽⁴⁾	-7.3							
С	G-4	30-32	shell	27.8	97.2	27.2	55.0	14.0	101.2	-8.6							
D	G-1B	20-22	shell	19.1	103.5	18.3	34.5	8.5	48.6	0.3							
E	G-1B	38-40	shell	19.8	104.8	25.7	51.0	10.5	88.3	-7.5	33	3	7	49	41	3	SM
F	G-1B	80-81.5	shell	16.5	108.1	56.5	112.0	24.5	162.6	-7.1	NP	NP	3	61	34	2	SM
G	G-1B	105-107	core	20.7	109.3	68.9	104.0	39.5	165.3	4.0	41	9	4	44	42	10	ML
H	G-5	27-30	core	17.5	114.4	21.0	40.0	10.5	84.8	-8.1	33	9	6	42	35	17	ML
Ι	G-5	13-15	shell	24.2	105.1	12.9	30.5	4.5	63.6	-9.0							
J	G-5	60-62	core	22.0	104.8	40.9	64.5	24.0	97.8	6.5	45	15	2	40	40	18	ML
K	G-3	15-17	shell	22.5	107.4	13.7	28.0	60.0	63.3	-7.9							
L	G-3	28-30	shell	24.1	98.5	19.8	35.5	10.5	60.7	-0.6							
M	G-2	18-20	shell	23.8	98.3	10.4	26.0	3.5	55.3	-8.1							
N	G-2	38-40	shell	18.7	106.5	27.3	47.0	15.5	81.7	-1.1							
0	G-2	58-60	shell	21.6	106.0	42.6	58.0	25.5	84.7	11.4							
Р	G-1B	20-22	shell	16.9 ⁽⁵⁾	102.8 ⁽⁵⁾	18.3 ⁽⁶⁾	49.0	5.0	87.7	-12.7							

Notes: (1) Effective consolidation stress was achieved using back pressures ranging from 49 to 79 psi.

(2) Deviator stress is equal to the vertical stress applied to the specimen during shearing.

(3) Reported pore pressure is the change in pore water pressure during shearing.

(4) During this test excess friction developed in the loading system and reported deviator stresses are believed to be larger than actual values.

(5) Test performed on recompacted material.

(6) Test specimen initially consolidated to an effective stress of 23.8 psi, then overconsolidated to an effective stress of 18.3 psi.

Boring Logs

			PAGE 1 OF 3				
PROJE	CT NAI	ME: Lake Petit Dam	PROJECT NO .:	GL062	5	BO	RING ID: G-1B
LOCAT	ION: G	-7	N: E			GR	OUND ELEV.: 1627.0
DRILLI			RIG: CME 750			DR	ILLER: P. Bergman
DATE	STAPT	ED 6 Oct 08	(OMDIETED	12.0-1	00		GGED BY: J. Htus
ELEVATION	DEPTH		COMPLETED-		WELL	Blower	G. Schmertmann
(FEET)	(FEET)	DESCR	IPTION	SYMBOL	DIAGRAM	6 in.	DRILLING LOG
8 1627	0.	SILT, micaceous, with co	arse gravel, trace fine	0 0 0 V		6	Begin Boring at 09:50hrs.
1622-	5-			0 <u>0 0</u> 0		8	
1617-	- 10- -	SILI and time to medium s -10 feet. Weathered gnei fine grained sand.	sand, some clay @ 9.75 ss fragments sampled as			ο 1α 1β 15 15	
1612-	- 15- -	SILT, micaceous, trace ve yellowish red (5YR5/8) Some coarse gravel (gneis organics (root) encountere	ry fine sand. Color is fragments) and trace id @ 14-15 feet				
1607—	- 20- -						Attempt shelby tube. Would not push (rock) Push shelby tube, 16" recovery
1602-	- 25- -		a				9 2
1597—	- 30- -	SILT and very fine grained Color: dark reddish brown	sand, micaceous. a to very dark gray.			8 8 14 17	
1592—	35-	SILT, trace very fine sand, weathered gneiss sampling organic material (bark/root	occassional lenses of g as medium sand, trace }			8 12 14	
							Push shelby tube, 16" recovery
1587	40						

REMARKS: 3-WELL PIEZOMETER CLUSTER CONSTRUCTED AS FOLLOWS: SHALLOW - 1-INCH PVC CASING SCREENED @ 20-40 MIDDLE - 1-INCH PVC CASING SCREENED @ 55-60 DEEP - 4-IN. PVC CASING SCREENED @ 105.5-110.5

				TEST BORING	ORING RECORD PAGE					2 OF 3
	PROJE	CT NA	ME: Lake Petit Dam P	ROJECT NO .:	GL062	5	BORING	G ID:	G-1B	
	DBILLI		-1 N	: E:			GROUN	ID ELEV.	:1627.0	
	METHO		ATRE Nud Botary /S				UNCO		P. Bergman	
ł	DATE:	START	ED- 6 Oct 98	OMPLETED-	12 Oct	98	CHECK	ED BY	G Schmertma	10
İ	ELEVATION	DEPTH				WELL	Blows/		G. Ochinartina	
	(FEET)	(FEET)	DESCRIPT		SYMBOL	DIAGRAM	6 in. 200600		DRILLING LOG	
.PL3 JDT1 11-24-9	1587	40					Pus	h shelby tu	be, 16" recovery.	
C:/LPU/LOGS/G	1582 — 1577 —	45- - - 50-	SILT, trace very fine sand, m (muscovite). Color: red (2.5) gray (10YR3/1)	icaceous ′R4/8) and very dark		=	5 8 9 9 26			
	1570	-	SILT, some very fine sand, s gravel (weathered gneiss and	ome medium to coarse I schist fragments).	0000		14 Split	d drilling @ t spoon bou 5	51-52 feet. uncing on wood	
I	1572-	55-			- a		111			
I	1.	6			19					
	1567-	- 60-			\$0,00,0		Pust	d drilling (ro n shelby tul	ock) @ 57.5-58 feet be, 16" recovery	19 19
	1562 —	- - 65 -	SILT, some very fine sand, so gravel (weathered gneiss and size and number with depth i	ome medium to coarse schist). Increasing n the spoon.	0.00.00.00		12	e:		
	1557—	- 70- -			2000000		1 + 1 + 18 18			
	1552—	- 75- - -	SAND, very fine to fine grain fine to medium gravel (weath schist fragments). Silty clay	ad, and silt, some ered gneiss and in end of spoon.	200000000		19 19 19 19 19			
L	1547	80			19					

				TEST BORI	ING RECORD		RD	PAGE 3 O			
	PROJE	CT NA	ME: Lake Petit Dam	PROJECT NO .:	G	L062	5	BO	RING ID:	G-1B	
	DRILLIN		- 1 • AT8.E	N: BIG: CME 750	E:	_		GH	OUND ELEV	.: 1627.0 P. Borgmon	
	METHO		ATEL	(8-in)				10	GGED BY	.1 Titus	
	DATE:	START	ED- 6 Oct 98	COMPLETED-	1	2 Oct	98	CH	ECKED BY:	G. Schmertmann	
	ELEVATION	DEPTH			Ť		WELL	Blowe	/		
	(FEET)	(FEET)	DESCR			YMBOL	DIAGRAM	6 in. 1009	G D	DRILLING LOG	
:\LPD\LOGS\G1.PL3 JDT-1 11-24-9	1542-	85-	SILT, some very fine sand gneiss gravel in end of spo	, micaceous. Trace son.		0000000000000			Pitcher barrel	sample, 16" recovery.	
	1537—	- 90- - -	SILT and very fine sand, s and gneiss fragments (1/2 inches of spoon has strom quartz, and feldspars. Ext	ome weathered schist -1 inch. diam). Lower 5 g banding of mafics, ensively weathered.	5	0.40.00 AB		000			
	1532-	95-	SILT, trace clay, micaceou Color: dark red (2.5YR3/6 (10YR5/8).	s. Mottled slightly. and yellowish brown				0 12 0 11 0 15	Drop by weigh	nt of rods ing much harder	
	1527—	100-	SILT, some clay, micaceou grayish brown (10YR3/2) (2.5YR4/8) @ 101-102 fe	us. Color is very dark @ 100-101 feet and red et.	1		_	• 10 • 11 12 • 10	Hit rock while Wood fragmer	drilling past 102.5. It came out of hole while	
	1522-	105-							drilling past 10 Pitcher barrel s	J3 feet. sample, 11" recovery₊⊨	
	1517-	- 110 -	Saprolite		STANTANTON			000	283 30 29		
	1512-	115	Boring terminated	at 114.00 feet					-		
-								1111	1		

				TEST BORI	NG RECC	RD			PAGE 1 OF 2
	PROJE	CT NAI	ME: Lake Petit Dam	PROJECT NO .:	GL06	25	BOF	RING ID:	G-2
	LOCAT	<u>ION: G</u>	-2	N:	E:		GRO	DUND ELEV	.:1584.8
ł	METHO			RIG: CIME 750			DRI		P. Bergman
ł	DATE:	START	FD- 14 Oct 98	COMPLETED-	15.00	+ 98	CHE		G. Schmertmann
İ	ELEVATION	DEPTH				WELL	Blows/		C. Connortinuin
_	(FEET)	(FEET)	DESCR	IPTION	SYMBO	L DIAGRAM	6 in. 100333	p	DRILLING LOG
L:\LPD\L0GS\G2.PL3 JDT-1 11-24-98	1585 1580- 1575-	0 - - 5 - - - - - - - - - - - - - - -	SILT and fine grained sand sand lenses. Color: band gray (2.5YR5/0). Weathe end of spoon.	l, some coarse grained ed red (10R4/8) and red gneiss fragments in			• 10 • 14 10 • 19	Begin Drilling	14 Oct 98 16:00 hrs.
	1570-							Hitting rock w Hitting rock w	vhile drilling vhile drilling
	1565-	20-				-		Pushed shelby Pushed shelby Switch to pitc	r tube, 21" recovery r tube, 8" push/recovery. her barrel for sampling
	1560-	- 25-		·~				×	
	1555—	- 30-	SILT, micaceous with fine coarse grained sand, some thick), trace coarse gravel	grained sand, some clay lenses (1 cm (gneiss)	200 9 C 0 C		8 0 V	39	
	1550-	35-			200 00 00	c			
	1545	40			00			Pitcher barrel,	18" гесоvегу

а_{. 4} 4

REMARKS: 3-WELL PIEZOMETER CLUSTER CONSTRUCTED AS FOLLOWS: SHALLOW - 1-IN. PVC CASING SCREENED @ 10-30 MIDDLE - 1-IN. PVC CASING SCREENED @ 50-55 DEEP - 1-IN. PVC CASING SCREENED @ 65.5-68.5

4				TEST BORING	i RECO	RD			PAGE 2 OF 2
	PROJE	CT NAI	ME: Lake Petit Dam	PROJECT NO .:	GL062	25	B	OF	RING ID: G-2
	LOCAT	10N: G	-2	N: E:				R	DUND ELEV.: 1584.8
	DRILLIN			RIG: CME 750			1P	RI	LLER: P. Bergman
	DATE	START	ED. 14 Oct 98		15.00	4 0.0			GED BY: J. Hus
İ	ELEVATION	DEPTH		CONFLETED	15 00	WELL	Blov		CRED BT. G. Schmertmann
	(FEET)	(FEET)	DESCR	PTION	SYMBOL	DIAGRAM	6 i 100	n. 61.0	DRILLING LOG
L:\LPU/L065/62.PL3 JD11 11-24-98	1545 1540	40 - - 45- -	SILT and fine to medium s	and, some coarse gravel.	00.00 00 00 00 00				Pitcher barrel, 27" recovery (1.5 foot push) 0
	1535- 1530-	- 50- - - 55-			20202020028				50/3
	1525—	- 60- - -	SILT and fine to medium s	and, some coarse gravel.	540000000				Pitcher barrel, 20" recovery Pitcher barrel, no recovery
	1520	65-	Color: reddish brown SILT and fine to medium sa brown Saprolite	and. Color: olive				1	Drill bit chattering @65-68 feet Wood fragments washing up out of borehole. 60/3
	1516-	70-	Bedrock, boring termi	nated at 69.50 feet	-1-12-1-101				
	1510—								
	1505	201							
L	1000	00			1			11	

				TEST BORING	RECOF	ID	-		PAGE 1 OF 2
	PROJE	CT NA	ME: Lake Petit Dam	PROJECT NO .:	GL062	5	BO	RING ID:	G-4
	DRILLIN		-4 · AT8.E	N: E:			GR	OUND ELEV	.:1605.8 D. Peremon
ł	METHO		AMETER: HSA/4" Mu	d Rotary				GED BY	GS / JDT
l	DATE:	START	ED- 2 Oct 98	COMPLETED-	5 Oct 9	8	CH	ECKED BY:	G. Schmertmann
1	ELEVATION (FEET)	DEPTH (FEET)	DESCR		SYMBOL	WELL	Blows/ 6 in.		DRILLING LOG
00-+	1606	0					10000	20CT98 Beg	ing drilling using 4-1/4 ID HS
	1601—	- - 5- -	SILT, some sand. Color:	brown	0.000000000		3 4 5 7		
	1596-	- 10- -	SILT, some sand, some m dry	edium gravel, micaceous,	0000000		6 9 9 9 1 0		
	1591 —	- 15- -			200 ac			Push shelby tu Push shelby tu	ube, 15" recovery ube, 7" recovery
	1586–	- 20- -	SILT, some sand, some gr (weathered gneiss and sch upper 6" spoon, more silt Color: dark brown.	avel. Medium gravel hist) concentrated in in lower 9", dry.	000 00 00 00 00 00 00 00 00 00 00 00 00		17 18 8		
	1581 —	- 25- -		*			4 13	a N	
	1576-	- 30- -			2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Attempted she Attempted she Resume drilling using 4-3/4 OI been offset by location.	alby tube, would not push alby tube, would not push g on 5OCT98 at 10:45 hrs D mud rotary. Boring has 5 feet from original
	1571-	35 - -			0.000 0.00			30-32 ft Pitc	cher barrel sample
	1566	40	SILT, some sand. Trace gr spoon. micacoeus, dark b	avel in upper 3" of rown.			7 7 8		

13				TEST BOR	ING RECORD	PAGE 2 OF
1	PROJE	CT NA	VIE: Lake Petit Dam	PROJECT NO .:	GL0625	BORING ID: G-4
ļ	LOCAT	ION: G	-4	N:	E:	GROUND ELEV.: 1605.8
ļ	DRILLI	NG CO.	: AT&E	RIG: CME 750		DRILLER: P. Bergman
	METHO	DD&D	AMETER: HSA/4" Mu	d Rotary		LOGGED BY: GS / JDT
	DATE:	START	ED- 2 Oct 98	COMPLETED-	5 Oct 98	CHECKED BY: G. Schmertmann
	ELEVATION (FEET)	DEPTH (FEET)	DESCR	IIPTION	SYMBOL DIAG	ELL Blows/ SRAM 6 in. DRILLING LOG
JDT1 11-24-98	1566	40 -			2005	8 Push shelby tube, 5" recovery.
L:\LPU\LOGS\G4.PL3	1561 -	- 45- - -	SILT, some sand, some fi micaceous	ne to meduim gravel,	80000	Push shelby tube, no recovery Pitcher barrel sample, 20" recovery
	1556-	50-	SILT, some sand, trace gr	avel (FILL)	20 20 V	Pitcher barrel sample, 8" recovery
	1551 -	55-	Saprolite Boring terminate	ed at 55.00 feet		50/4
	1546-	- - 60-	P			
	1541 —	65-		×		
	1536-	70-				
	1531-	- 75 - - -				
	1526	80				

			TEST BORI	NG RECORD	PAGE I UF
PROJE	CT NA	ME: Lake Petit Dam	PROJECT NO .:	GL0625	BORING ID: G-5
LUCAT		-D	N:	L:	GROUND ELEV.: 1646.72
DRILLI			RIG: CME 750		DRILLER: P. Bergman
DATE		FD 12 Oct 09		14.0 -+ 00	LOGGED BY: J.Titus
DATE:	DEPTH		COMPLETED-	14 Uct 98	CHECKED BY: G. Schmertmann
(FEET)	(FEET)	DESCR	IPTION	SYMBOL DIAGRA	AM 8 in. DRILLING LOG
1647 1642-	5-	SILT some fine to medium medium gravel. Dry, Color	sand, some fine to : brown (7.5YR4/4)	1 20 20 20 20 20 20 20 20 20 20 20 20 20	Begin drilling on 12OCT98: 13:50 hrs.
1637-	10-	SILT, some very fine to fir Color: banded strong brow gray (7.5YR4/0).	ne sand, micaceous. /n (7.5YR5/6) and dark		a s 12 15
1632-	15-	SILT, trace very fine sand.	Color: dark gray to		Push shelby tube, 17" recovery Pushed shelby tube 1 foot, 24" recovery (wash out)
1627-	20-	very dark gray (10YR4/1 - SILT, trace clay, micaceou Extremely weathered schis spoon.	3/1) s, Color: red (10R4/8) it (to silt) in end of		8 4 7 3
1622—	- 25	SILT, some very fine sand, in lower 6" of spoon.	micaceous. Trace clay		5 5 4 5 Push shelby tube, 19" recovery
1617- 1612-	30- - - 35-	SILT, some fine to medium clay, micaceous. Color: re	quartz sand, trace d (2.5YR4/8).		Push shelby tube, no recovery
		SILT and sand (weathered	gneiss)		5
1607	40	SILT, and clay. Wood frag	ments at 29 feet.		9

.

REMARKS: Blank casing installed (no screen) for downhole geophysics applications,

1				TEST BOR	ING RECO	RD		A	PAGE 2 OF 2
	PROJE	CT NA	ME: Lake Petit Dam	PROJECT NO .:	GL062	5	BO	RING ID:	G-5
	LOCAT	ION: G	-5	N:	E:		GR	OUND ELEV.	:1646.72
	DRILLI	NG CO.	: AT&E	RIG: CME 750			DR	LLER:	P. Bergman
	METHO		IAMETER: Mud Rotary	(8-in.)			LOC	GGED BY:	J.Titus
	DATE:	STARI	ED- 12 Oct 98	COMPLETED-	14 Oct	98	СН	ECKED BY:	G. Schmertmann
	(FEET)	(FEET)	DESCR	PTION	SYMBOL	DIAGRAM	6 in.	6D	DRILLING LOG
1-1 11-24-98	1607	40					7	Wood debris v	vashing up out of borehole
UL 214.65/65	1602-	45-						Push shelby tu	ube, 15" recovery
L:\LPUUL		-	SILT, micaceous, trace cla sand, trace wood/roots. C	v, trace very fine Color: red (10R4/8)			2 3	wood debris in	tube 5". No recovery, a end of tube
	1597—	50-					4		
	1592-	- 55- -	Increasing wood fragment	s up to 1" diam.			4 8 5		
	1587—	- 60- -						Push shelby tu Push shelby tu	be, 22" recovery be, 14" recovery
	1582-	- 65-	SILT, some clay, trace ver @ 63-64.5 - red (10R4/8) @ 64.5-65 - dark gray (5Y	y fine sand. Color: R4/1)			4 15 6 9	×	
	1577	70-	Boring terminate	d at 67.00 feet					
	Sa i								
	x								
	1572-	75-				-			
I		<u>s</u>							
I		-							
l		3							
I	1507								
L	100/	80					ШU		

Summary of Triaxial Compression Testing Results, Particle Size Distribution, and Physical Properties

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

ſ	Site	Lab	Spe	cimen Init	ial Conditi	ons				Pe	eak			U	ltimate			
	Sample	Sample	Height	Diameter	Moisture	Dry Unit	u	σ'c	σ'ι-σ'3	σ'ι	ε _a	u	σ'1-σ'3	۵,۱	ε	u	Figure	Remarks
	ID	No.			Content	Weight				0		0					No.	
			(in.)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
		98J21.1	6,19	2.85	17.7	97.9	56.4	13.6					81.3	102.2	15.6	49.1		
	G-4 (D) (15'-16')																- <u>1</u>	
L																		

Notes:

ui = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_c = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

1. Due to equipment malfunctioning, axial load piston generated friction forces beyond the recommended standard practice resulting in very high zero load correction.

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Lab Specimen Initial Conditions							Pe	eak			U	ltimate				
Sample	Sample	Height	Diameter	Moisture	Dry Unit	uj -	σ'c	σ'ι-σ'3	σ'ι	εa	u	σ'1-σ'3	σ_1	εα	u	Figure	Remarks
ID	No			Content	Weight											No.	
		(in.)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
	98J41.1	6.73	2.89	27.8	97.2	51.2	27.2					101.2	137.1	16.0	42.6		
G-4 (L) (30'-32')																2	

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_c = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

Ι.

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Specimen Initial Conditions							P	eak			U	ltimate				
Sample	Sample	Height	Diameter	Moisture	Dry Unit Weight	uj	σ'c	σ'ι-σ'3	σ'ι	ε	u	σ'1-σ'3	σ'ι	εם	u	Figure	Remarks
	NO.	(in.)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)	No.	
	98J42.1	6.93	2.80	25.9	103.1	49.2	41.5					113.1	153.0	15.9	50.8		
G-4 (H) (47'-50')																3	

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_{c} = Consolidation pressure, (psi)

 $\sigma'_{I} =$ Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 ε_a = Axial strain, (%)

1.

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Site Lab		cimen Init	ial Conditi	ons				Pe	eak			U	ltimate			
Sample	Sample	Height	Diameter	Moisture	Dry Unit	ui	σ'c	σ'1-σ'3	σ'ι	ε _a	u	σ'ι-σ'3	σ'ι	εa	u	Figure	Remarks
ID	No			Content	Weight											No	
		(in.)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
	98J67.1	5.91	2.86	19.1	103.5	50.6	18.3					48.6	66.5	15.9	50.9		
G-1B (E) (20'-22')																4	
								2								l	

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_c = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 ε_a = Axial strain, (%)

I.

Note(s):

1. The test specimen was formed/remolded by recycling the tested (sheared) undisturbed Shelby tube specimen. The test material was passed through a U.S. Standard No. 3/8" sieve. The passing portion was remolded at a moisture content of 16.9% and at a dry unit weight of 102.8 pcf.
2. The test specimen was initially consolidated at 23.8 psi. and then was over-consolidated and sheared at 18.3 psi.

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Lab Specimen Initial Conditions							Р	eak			U	ltimate				
Sample	Sample	Height	Diameter	Moisture	Dry Unit	uj	σ'c	σ'1-σ'3	σ*ι	ε	u	$\sigma_1^*-\sigma_3^*$	σ'ι	εa	u	Figure	Remarks
ID	No,			Content	Weight											No.	
		(in,)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
	98J67-Remolded.1	6.26	2.85	16.9	102.8	78.6	18.3					87.7	118.6	15.6	65.9		
G-1B (E) (20'-22')																5	
Remolded														-			

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_c = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

1. The test specimen was formed/remolded by recycling the tested (sheared) undisturbed Shelby tube specimen. The test material was passed through a U₁S. Standard No. 3/8" sieve. The passing portion was remolded at a moisture content of 16.9% and at a dry unit weight of 102.8 pcf.

2. The test specimen was initially consolidated at 23.8 psi, and then was over-consolidated and sheared at 18.3 psi.

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Site Lab		cimen Init	ial Conditi	ions				P	eak		Ultimate					
Sample	Sample	Height	Diameter	Moisture	Dry Unit	uī	σ'c	σ'ι-σ'3	σ';	εa	u	σ'1-σ'3	σ'ι	ε	u	Figure	Remarks
ID	No			Content	Weight											No.	
		(in _s)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
	98J68.1	6.69	2.87	19.8	104.8	60.1	25.7					88.3	121.4	15.9	52.6		
G-1B (H) (38'-40')																6	

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_c = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

1.

GEOSYNTEC CONSULTANTS Geomechanics and Environmental Laboratory

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Lab Specimen Initial Conditions		ons				Pe	eak			U	ltimate					
Sample	Sample	Height	Diameter	Moisture	Dry Unit	u;	σ'c	σ' <u>1-</u> σ' <u>3</u>	σ'ι	ε	u	σ' ₁ -σ' ₃	σ't	ε_	u	Figure	Remarks
ID	No.			Content	Weight											No.	
		(int)	(in:)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
	98J75.1	6.93	2.89	16.5	108.1	48.2	56.5					162,6	226.2	15.9	41.1		
G-1B (P) (80'-81.5')																7	

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_{c} = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

1.

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Lab	Spe	cimen Init	ial Conditi	ons				P	eak			U	ltimate			
Sample	Sample	Height	Diameter	Moisture	Dry Unit	ц	σ'c	σ'ι-σ'3	σ'ι	εα	u	σ'1-σ'3	σ'ι	ε_	u	Figure	Remarks
ID	No			Content	Weight											No.	
		(in.)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
	98J76.1	6.65	2.88	20.7	109.8	32.2	68.9					165.3	230.1	15.6	36.2		
G-1B (U) (105'-107')																8	

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_c = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

1.

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Lab	Spe	cimen Init	ial Conditi	ons				Pe	eak			U	ltimate			
Sample	Sample	Height	Diameter	Moisture	Dry Unit	U	σ'c	σ'ι-σ'3	σ'ι	ε _a	u	σ'1-σ'3	σ'ι	εα	u	Figure	Remarks
ID	No			Content	Weight											No.	
		(in.)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
	98J111.1	6.87	2.86	17.5	114.4	52.4	21.0					84.8	113.9	15.6	44.3		
G-5 (G) (27'-30')																9	

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_{c} = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 $\sigma'_3 =$ Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Lab	Spe	cimen Init	ial Conditi	ons				Pe	eak			U	ltimate			
Sample	Sample	Height	Diameter	Moisture	Dry Unit	u _i	σ'c	σ'ι-σ'3	σ'ι	ε _a	u	σ'1-σ'3	σ'ι	ε _a	u	Figure	Remarks
IÐ	No,			Content	Weight											No.	
		(in.)	(in:)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
	98.1112.1	5.69	2.86	24.2	105.1	50.6	12.9					63.6	85.5	15.8	41.6		
G-5 (C) (13'-15')																10	

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_c = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Lab	Spe	cimen Init	ial Conditi	ons			-	P	eak			U	ltimate			
Sample	Sample	Height	Diameter	Moisture	Dry Unit	ui	σ'c	σ'ι-σ'3	σ'ι	εa	u	σ'1-σ'3	σ'ι	ε _a	u	Figure	Remarks
ID	No.			Content	Weight											No.	
		(in.)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
	98J141.1	6.14	2.84	22.5	107.4	51.1	13.7					63.3	84.9	15.1	43.2		
G-3 (D) (15'-17')										3						11	
										4							

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_c = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

Ëa

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Lab	Spe	cimen lnit	ial Conditi	ons				P	eak			U	ltimate			
Sample	Sample	Height	Diameter	Moisture	Dry Unit	ui	σ'c	σ'ι-σ'3	σ'ι	ε _a	u	σ'1-σ'3	σ'ι	ε,	u	Figure	Remarks
ID	No			Content	Weight											No.	
		(in.)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
	98J142.1	6.26	2.86	24.1	98.5	51.3	19.8					60.7	81.1	15.9	50.7		
G-3 (G) (28'-30')																12	

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_c = Consolidation pressure, (psi)

 $\sigma'_1 = Effective axial stress, (psi)$

 σ'_3 = Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

Ι.

A

GEOSYNTEC CONSULTANTS

Geomechanics and Environmental Laboratory

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Lab	Spe	cimen Init	ial Conditi	ons				P	eak			U	ltimate			
Sample	Sample	Height	Diameter	Moisture	Dry Unit	ui	σ'c	σ'1-σ'3	۵,۱	ε _a	u	σ'1-σ'3	σ'ι	εa	u	Figure	Remarks
ID	No.			Content	Weight											No	
		(in.)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	-(psi)	(psi)	(%)	(psi)		
	98J156.1	6.06	2.84	23.8	98.3	49.2	10.4					55.3	73.8	15.3	41.1		
G-2 (B) (18'-20')										ſ 						13	
																1	

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_c = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Lab	Spe	cimen Init	ial Conditi	ons				P	eak			U	ltimate			
Sample	Sample	Height	Diameter	Moisture	Dry Unit	uj –	σ'c	σ'1-σ'3	σ'1	ε _a	u	σ'1-σ'3	σ'ι	ε _a	u	Figure	Remarks
ID	No.			Content	Weight						0					No.	
		(in,)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
	98J157,1	5.83	2.87	18.7	106.5	49.7	27.3					81.7	110.1	16.0	48.6		
G-2 (E) (38'-40')												·				14	
																·	

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_c = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Lab	Spe	cimen Init	ial Conditi	ons				P	eak			U	ltimate			
Sample	Sample	Height	Diameter	Moisture	Dry Unit	u	σ'c	σ'1-σ'3	σ'1	ε _a	u	σ'1-σ'3	σ*1	ε	u	Figure	Remarks
ID	No.			Content	Weight											No	
		(in.)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
	98J159.1	5.67	2.87	21.6	106.0	50.5	42.6					84.7	115.9	15.3	61.9		
G-2 (H) (58'-60')																15	

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_c = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

Ť.

CONSOLIDATED UNDRAINED (ICU) TRIAXIAL COMPRESSION TESTS

SUMMARY OF TEST RESULTS (ASTM D 4767)⁽¹⁾

Site	Lab	Spe	cimen Init	ial Conditi	ons				Pe	eak			U	ltimate			
Sample	Sample	Height	Diameter	Moisture	Dry Unit	ui	σ'c	σ'1-σ'3	σ'ι	ε _a	u	σ'1-σ'3	σ'ι	ε,	u	Figure	Remarks
ID	No			Content	Weight											No.	
		(in.)	(in.)	(%)	(pcf)	(psi)	(psi)	(psi)	(psi)	(%)	(psi)	(psi)	(psi)	(%)	(psi)		
	98J162.1	6.10	2.85	22.0	104.8	50.0	40.9					97.8	132.3	15.9	56.5		
G-5 (P) (60'-62')																16	

Notes:

u_i = Initial pore pressure,(psi)

u = Pore pressure,(psi)

 σ'_c = Consolidation pressure, (psi)

 σ'_1 = Effective axial stress, (psi)

 σ'_3 = Effective radial stress (confining pressure), (psi)

 $\varepsilon_a = Axial strain, (\%)$

1.

ie.

ATTACHMENT 3 Seepage Analysis Results

ATTACHMENT 4 Slope Stability Analysis Results **Steady-State Seepage Stability Results**

Steady-State Seepage Pseudostatic Stability Results

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Bedrock	Bedrock (Impenetrable)			
	Dam Core (Undrained)	Mohr-Coulomb	130	1,000	23
	Dam Shell (Undrained)	Mohr-Coulomb	125	1,000	23
	Saprolite - D/S (Undrained)	Mohr-Coulomb	125	0	35
	Saprolite - U/S (Undrained)	Bedrock (Impenetrable)			
	Soil below ball field (Undrained)	Mohr-Coulomb	125	0	32

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Bedrock	Bedrock (Impenetrable)			
	Dam Core (Undrained)	Mohr-Coulomb	130	1,000	23
	Dam Shell (Undrained)	Mohr-Coulomb	125	1,000	23
	Saprolite - D/S (Undrained)	Mohr-Coulomb	125	0	35
	Saprolite - U/S (Undrained)	Bedrock (Impenetrable)			
	Soil below ball field (Undrained)	Mohr-Coulomb	125	0	32

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Bedrock	Bedrock (Impenetrable)			
	Dam Core (Undrained)	Mohr-Coulomb	130	1,000	23
	Dam Shell (Undrained)	Mohr-Coulomb	125	1,000	23
	Saprolite - D/S (Undrained)	Mohr-Coulomb	125	0	35
	Saprolite - U/S (Undrained)	Bedrock (Impenetrable)			
	Soil below ball field (Undrained)	Mohr-Coulomb	125	0	32

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Bedrock	Bedrock (Impenetrable)			
	Dam Core (Undrained)	Mohr-Coulomb	130	1,000	23
	Dam Shell (Undrained)	Mohr-Coulomb	125	1,000	23
	Saprolite - D/S (Undrained)	Mohr-Coulomb	125	0	35
	Saprolite - U/S (Undrained)	Bedrock (Impenetrable)			
	Soil below ball field (Undrained)	Mohr-Coulomb	125	0	32

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Bedrock	Bedrock (Impenetrable)			
	Dam Core (Undrained)	Mohr-Coulomb	130	1,000	23
	Dam Shell (Undrained)	Mohr-Coulomb	125	1,000	23
	Saprolite - D/S (Undrained)	Mohr-Coulomb	125	0	35
	Saprolite - U/S (Undrained)	Bedrock (Impenetrable)			
	Soil below ball field (Undrained)	Mohr-Coulomb	125	0	32

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Bedrock	Bedrock (Impenetrable)			
	Dam Core (Undrained)	Mohr-Coulomb	130	1,000	23
	Dam Shell (Undrained)	Mohr-Coulomb	125	1,000	23
	Saprolite - D/S (Undrained)	Mohr-Coulomb	125	0	35
	Saprolite - U/S (Undrained)	Bedrock (Impenetrable)			
	Soil below ball field (Undrained)	Mohr-Coulomb	125	0	32

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Bedrock	Bedrock (Impenetrable)			
	Dam Core (Undrained)	Mohr-Coulomb	130	1,000	23
	Dam Shell (Undrained)	Mohr-Coulomb	125	1,000	23
	Saprolite - D/S (Undrained)	Mohr-Coulomb	125	0	35
	Saprolite - U/S (Undrained)	Bedrock (Impenetrable)			
	Soil below ball field (Undrained)	Mohr-Coulomb	125	0	32

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Bedrock	Bedrock (Impenetrable)			
	Dam Core (Undrained)	Mohr-Coulomb	130	1,000	23
	Dam Shell (Undrained)	Mohr-Coulomb	125	1,000	23
	Saprolite - D/S (Undrained)	Mohr-Coulomb	125	0	35
	Saprolite - U/S (Undrained)	Bedrock (Impenetrable)			
	Soil below ball field (Undrained)	Mohr-Coulomb	125	0	32

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Bedrock	Bedrock (Impenetrable)			
	Dam Core (Undrained)	Mohr-Coulomb	130	1,000	23
	Dam Shell (Undrained)	Mohr-Coulomb	125	1,000	23
	Saprolite - D/S (Undrained)	Mohr-Coulomb	125	0	35
	Saprolite - U/S (Undrained)	Bedrock (Impenetrable)			
	Soil below ball field (Undrained)	Mohr-Coulomb	125	0	32

Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)
	Bedrock	Bedrock (Impenetrable)			
	Dam Core (Undrained)	Mohr-Coulomb	130	1,000	23
	Dam Shell (Undrained)	Mohr-Coulomb	125	1,000	23
	Saprolite - D/S (Undrained)	Mohr-Coulomb	125	0	35
	Saprolite - U/S (Undrained)	Bedrock (Impenetrable)			
	Soil below ball field (Undrained)	Mohr-Coulomb	125	0	32

Rapid Drawdown Stability Results
Color	Name	Model	Unit Weight (pcf)	Cohesion' (psf)	Phi' (°)	Cohesion R (psf)	Phi R (°)	Piezometric Line	Piezometric Line After Drawdown
	Bedrock (Duncan)	Bedrock (Impenetrable)						1	2
	Dam Core (Duncan)	Mohr-Coulomb	130	0	32	1,000	23	1	2
	Dam Shell (Duncan)	Mohr-Coulomb	125	0	34	1,000	23	1	2
	Saprolite - D/S (Duncan)	Mohr-Coulomb	125	0	35	0	35	1	2
	Saprolite - U/S (Duncan)	Bedrock (Impenetrable)						1	2
	Soil below ball field (Duncan)	Mohr-Coulomb	125	0	32	0	32	1	2

